Monitoring toxic metals to redress the impacts of large-scale mining in Peru
Residents in Porcón, Peru had every reason to think their lives would henceforth improve when in 2004 their community was allowed to draw water from sources nearby. Ten years before, large-scale mining had initiated its activities in the Jequetepeque River basin. With mining, pollution by toxic metals soared. Later on, however, Yanacocha Mining proceeded to drill a 150-metre deep well for its own supply, and water flows in Porcón – as well as in other communities – significantly dropped. Road blocks followed, riot police intervened, and several activists were arrested. Again, in July 2012, public contestation of the new Conga project ended up with five dwellers dead by police-fired bullet shots. The Porcón watershed is the natural sink for toxic metal-rich waste used for leaching gold in the largest open mine in Latin America.
| ![]() |
---|---|
Demonstration at Cajamarca, Perú (2008). Source: EScGD | Water treatment plant, Cajamarca, Perú (2008). Source: EScGD |
Monitoring toxic metals is the core activity of a team of researchers – led by Cristina Yacoub – that from 2007 to 2013 was characterizing water and sediment pollution in the Jequetepeque River basin. EScGD acts in partnership with local actors to develop innovative tools to redress the problem. Thus, for instance, between 2008 and 2010 we assisted GRUFIDES – a Peruvian rights organization – to monitor the effects of acid mine drainage. Additionally, a SWAT model of the basin was calibrated and used to better understand the dynamics shaping the flow of pollutants downstream. As a result, research was informing the elaboration of an environmental monitoring protocol by a consortium of Peruvian and Spanish universities.

EScGD is at the forefront of efforts to unveil the crucial role of the topographical setup in pollution patterns. Cristina Yacoub and Agustí Pérez-Foguet, for instance, have singled out terrain slope as a key driver conforming runoffs in mountain basins. In so doing EScGD became the first research group to consider slope as a variable when calibrating SWAT models describing river basins. This breakthrough has paved the way for the further improvement of SWAT models for simulating mountainous basins dynamics.

Comparison of measured and simulated daily streamflow from 2006 to 2009. Source: Yacoub, C. et al. (2013).
Comparteix: